ORGANIC LETTERS

2013 Vol. 15, No. 24 6306–6308


A New Route to α -Carbolines Based on 6π -Electrocyclization of Indole-3-alkenyl Oximes

Sophie J. Markey, William Lewis, and Christopher J. Moody*

School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K. c.j.moody@nottingham.ac.uk

Received November 5, 2013

ABSTRACT

Indoles are converted into α -carbolines in four steps by acylation at C-3, Boc-protection, olefination of the resulting 3-indolyl aldehydes or ketones to give *N*-Boc-3-indolyl alkenyl oxime *O*-methyl ethers, which upon heating to 240 °C under microwave irradiation undergo loss of the Boc-group, and 6π -electrocyclization to α -carbolines, following aromatization by loss of methanol (11 examples, 30–90% yield).

In contrast to β -carbolines that are widely represented among natural products and synthetic bioactive compounds, $^{1-3}$ α -carbolines (pyrido[2,3-b]indoles) are considerably less well investigated. Nevertheless there are some important examples such as the naturally occurring anticancer compounds grossularine-1 and $^{-2^{6-9}}$ and the neuronal

- (1) Airaksinen, M. M.; Kari, I. Med. Biol. 1981, 59, 21-34.
- (2) Peduto, A.; More, V.; de Caprariis, P.; Festa, M.; Capasso, A.; Piacente, S.; De Martino, L.; De Feo, V.; Filosa, R. *Mini-Rev. Med. Chem.* **2011**. *11*. 486–491.
- (3) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14, 479–500.
- (4) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. *Pharm. Chem. J. USSR* **2011**, *44*, 654–678.
- (5) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. *Pharm. Chem. J. USSR* **2011**, *45*, 389–400.
- (6) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. *Synlett* **1995**, 147–148.
- (7) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. J. Org. Chem. 1995, 60, 5899–5904.
- (8) Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615–2618.
- (9) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. *Angew. Chem., Int. Ed.* **2005**, *44*, 3280–3282.
- (10) Kim, J. S.; ShinYa, K.; Furihata, K.; Hayakawa, Y.; Seto, H. *Tetrahedron Lett.* **1997**, *38*, 3431–3434.

cell protective agent mescengricin (Figure 1).¹⁰ In the medicinal chemistry arena, α-carbolines such as the GABA modulator,¹¹ and the inhibitor of microsomal triglyceride transport protein implitapide,^{12,13} have also been widely studied.

As a consequence, routes for the construction of the α -carboline nucleus are of interest, but unlike their β -carboline counterparts that are almost invariably prepared from tryptophan or tryptamine derivatives, there is no main synthetic access to the isomeric α -carbolines. Thus, α -carbolines have been obtained from 2-aminoindoles, α -carbolines have α -carb

⁽¹¹⁾ Bolton, D.; Forbes, I. T.; Hayward, C. J.; Piper, D. C.; Thomas, D. R.; Thompson, M.; Upton, N. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 1941–1946.

⁽¹²⁾ Pahan, K. Cell. Mol. Life Sci. 2006, 63, 1165-1178.

⁽¹³⁾ Ueshima, K.; Akihisa-Umeno, H.; Nagayoshi, A.; Takakura, S.; Matsuo, M.; Mutoh, S. *Biol. Pharm. Bull.* **2005**, *28*, 247–252.

⁽¹⁴⁾ Kumar, A. S.; Nagarajan, R. Org. Lett. 2011, 13, 1398-1401.

⁽¹⁵⁾ Gupta, S.; Kumar, B.; Kundu, B. J. Org. Chem. 2011, 76, 10154–10162

⁽¹⁶⁾ Kumar, A. S.; Rao, P. V. A.; Nagarajan, R. *Org. Biomol. Chem.* **2012**, *10*, 5084–5093.

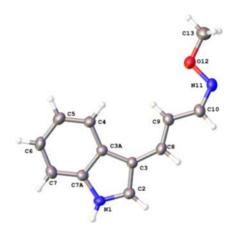

carbazoles, 17 by intramolecular Diels—Alder reaction of pyrazinones, 18 from palladium-catalyzed reactions of anilines with 2,3-dihalopyridines, 19,20 by cyclization of 2-isocyanato-indoles, $^{6-8}$ and of iminyl radicals. $^{21-24}$ However, we were attracted by the possibility of developing a more general route based on a 6π -electrocyclic process, and we now report our initial results.

Figure 1. Structures of naturally occurring and bioactive α -carbolines.

The projected precursors to α -carbolines were the 3-in-dolyl alkenyl oxime ethers 1, accessible from 3-acylindoles 2 (Scheme 1). 3-Acylindoles are readily available by exploiting the natural reactivity of indoles to undergo facile

Scheme 1. Projected Route to α -Carbolines by 6π -Electrocyclization of 3-Indolyl Alkenyl Oxime Ethers

$$\begin{array}{c} X \\ X \\ N \\ N \\ N \\ N \\ R^2 \\ \alpha\text{-carboline} \\ \text{pyrido}[2,3-b]\text{indole} \\ X \\ X \\ R \\ \mathbf{Z} \\ \mathbf{Z} \\ \mathbf{X} \\$$

Figure 2. X-ray crystal structure of (E)-3-(1-methyl-1H-indol-3-yl)-propenal (Z)-methyl oxime.

acylation at the 3-position. The participation of oxime ethers in 6π -electrocyclic processes is known from the work of Hibino, ²⁵ and the possible intermediacy of imines related to **1** has been implicated in other work ²³ and in a biomimetic synthesis of grossularine-1. ⁹

The precursors to the desired oxime ethers were 3-acylindoles **2** and phosphonates **3**. The phosphonates were prepared by reaction of the corresponding carbonyl compound with O-methyl hydroxylamine, with the aldoxime precursor being prepared by acid hydrolysis of the commercially available diethyl (2,2-diethoxy)ethylphosphonate. The subsequent Horner—Wadsworth—Emmons reaction with N-Boc-protected 3-indolyl aldehydes or ketones gave the required alkenyl oxime ethers **4** generally as mixtures of E/Z-alkene isomers that could be readily separated and characterized, apart from alkene **4g** which was formed as the E-alkene.

In general only one oxime isomer was observed which, on the basis of the chemical shift of the oxime RCH= NOMe proton in the ¹H NMR spectrum, suggested that

Org. Lett., Vol. 15, No. 24, **2013**

⁽¹⁷⁾ Vera-Luque, P.; Alajarín, R.; Alvarez-Builla, J.; Vaquero, J. J. *Org. Lett.* **2006**, *8*, 415–418.

⁽¹⁸⁾ Tahri, A.; Buysens, K. J.; Van der Eycken, E. V.; Vandenberghe, D. M.; Hoornaert, G. J. *Tetrahedron* **1998**, *54*, 13211–13226.

⁽¹⁹⁾ Hostyn, S.; Van Baelen, G.; Lemiere, G. L. F.; Maes, B. U. W. Adv. Synth. Catal. **2008**, 350, 2653–2660.

⁽²⁰⁾ Laha, J. K.; Petrou, P.; Cuny, G. D. *J. Org. Chem.* **2009**, *74*, 3152–3155.

⁽²¹⁾ Tanaka, K.; Kitamura, M.; Narasaka, K. Bull. Chem. Soc. Jpn. **2005**, 78, 1659–1664.

⁽²²⁾ Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. *Chem. Commun.* **2007**, 4041–4043.

⁽²³⁾ Portela-Cubillo, F.; Surgenor, B. A.; Aitken, R. A.; Walton, J. C. J. Org. Chem. **2008**, 73, 8124–8127.

⁽²⁴⁾ Ono, A.; Narasaka, K. Chem. Lett. 2001, 146-147.

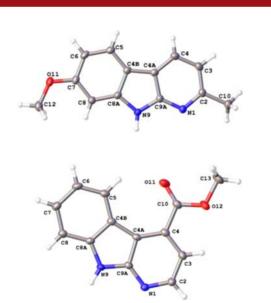

⁽²⁵⁾ Choshi, T.; Hibino, S. Heterocycles 2011, 83, 1205-1239.

Table 1. Preparation of Indolyl Alkenyl Oxime Ethers 4 [Indoles, Phosphonates, 3a, $R^2 = H$; 3b, $R^2 = Me$] and Their Conversion into α-Carbolines 5 by 6π -Electrocyclization

entry	2	X^a	${ m R}^4$	3	\mathbb{R}^2	4	E yield/%	Z yield/%	\mathbf{X}^b	5	yield/%
1	a	Н	Н	a	Н	a	46	38	Н	a	73
2	b	5-OMe	\mathbf{H}	a	H	b	37	25	6-OMe	b	36
3	\mathbf{c}	6-OMe	\mathbf{H}	a	H	\mathbf{c}	38	60	$7\text{-}\mathrm{OMe}$	\mathbf{c}	30
4	d	5-Cl	\mathbf{H}	a	H	d	49	42	6-Cl	d	55
5	a	H	H	b	Me	e	11	22	Н	e	90
6	c	6-OMe	\mathbf{H}	b	Me	f	28	62	7-OMe	f	77
7	b	5-OMe	\mathbf{H}	b	Me	g	34^c	_	6-OMe	g	41
8	e	Н	$\mathrm{CO_{2}Me}$	a	H	h	38^c	49	Н	h	52
9	f	Н	Me	a	H	i	49	16^c	Н	i	62
10	f	Н	${f Me}$	b	Me	j	45	23	H	j	65
11	e	H	$\mathrm{CO_{2}Me}$	b	Me	k	52	29	H	k	51

^a Indole numbering. ^b α-Carboline numbering. ^c Mixture of oxime geometric isomers.

the oximes have the (Z)-geometry. In the case of oxime $\mathbf{4a}$, removal of the Boc-protecting group gave the crystalline E-alkene-Z-oxime (Figure 2), confirming the Z-stereochemistry of the oxime double bond. The olefination reaction was then extended to indole-3-carbaldehydes bearing chloro- and alkoxy-groups, and indolyl ketones with methyl or ester groups (Table 1).

Figure 3. X-ray crystal structures of α -carbolines **5f** and **5h**.

With a range of oxime ethers 4 in hand, their thermal cyclization reactions were studied. Initially, these were investigated leaving the Boc-group in place since it was

assumed that it would be cleaved under the high temperature conditions. In the event, heating 4a, as a mixture of geometric isomers, to 180 °C in 1,2-dichlorobenzene gave a mixture of the desired α -carboline 5a (12%) plus the Boc-deprotected starting material. Increasing the temperature to 240 °C under microwave irradiation delivered the α -carboline **5a** in 73% yield. We assume that the reaction involves initial thermal removal of the Boc-group to give the NH indole in which isomerization of the alkene into the cis-isomer required for electrocyclization is facilitated. In support of this, prior removal of the Boc-group in 4a under hydrolytic conditions (82%) gave the corresponding NH indole that cyclized to α-carboline 5a (54%) upon heating to 240 °C. It would appear that the NH is essential for cyclization since the corresponding N-methyl compound does not give 9-methyl-α-carboline under the same conditions. Electrocyclization of the indolyl alkenyl oxime ethers **4b**-**4k**, starting with either (Z)- or (E)-alkene isomers, proceeded similarly to give a range of α-carbolines 5 in 30–90% yield (Table 1). The structures of the carbolines 5f and **5h** were confirmed by X-ray crystallography (Figure 3).

In conclusion, we have developed a new general route to α -carbolines that proceeds in just four steps from indoles.

Acknowledgment. We thank the EPSRC for DTA studentship support to S.J.M.

Supporting Information Available. All experimental procedures, copies of ¹H and ¹³C NMR spectra, and cif files for X-ray structures. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

6308 Org. Lett., Vol. 15, No. 24, 2013